
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

FPGA2: An Open Source Framework for
FPGA-GPU PCIe Communication

Yann Thoma, Alberto Dassatti, Daniel Molla
Reconfigurable and Embedded Digital Systems Institute - REDS

HEIG-VD // School of Business and Engineering Vaud; HES-SO // University of Applied Sciences Western Switzerland
CH-1400 Yverdon-les-Bains, Switzerland

Corresponding author: Yann Thoma. E-mail: yann.thoma@heig-vd.ch. Phone: +41245576273. Web: http://reds.heig-vd.ch

Abstract—In recent years two main platforms emerged as
powerful key players in the domain of parallel computing: GPUs
and FPGAs. Many researches investigate interaction and benefits
of coupling them with a general purpose processor (CPU), but
very few, and only very recently, integrate the two in the same
computational system. Even less research are focusing on direct
interaction of the two platforms [1].

This paper presents an open source framework enabling easy
integration of GPU and FPGA resources; Our work provides
direct data transfer between the two platforms with minimal
CPU coordination at high data rate and low latency. Finally, at
the best of our knowledge, this is the first proposition of an open
source implementation of a system including an FPGA and a
GPU that provides code for both sides.

Notwithstanding the generality of the presented framework,
we present in this paper an actual implementation consisting of a
single GPU board and a FPGA board connected through a PCIe
link. Measures on this implementation demonstrate achieved data
rate that are close to the theoretical maximum.

I. INTRODUCTION

FPGAs and GPUs are two platforms capable of accelerat-
ing data processing, both of them being a good alternative to
standard CPU computing for specific applications. The choice
of one platform should depend on the type of calculation to be
performed, and [2] gives a good overview of the characteristics
that should drive such decision. On one end, FPGAs are
excellent for fully pipelined computing, and for low-level
bit-wise operations (cryptography applications, for instance).
On the other end, GPUs are easier to program and are very
good candidates for massive parallel computing applications
showing a low dependency between data. Programming is
normally performed on high level software languages such
as C/C++ supported by a rich set of tools for profiling and
debugging. Parallelism is achieved by means of specialized
languages extensions and libraries, notable examples being
CUDA [3] and OpenCL [4].

In this context, a lot of literature illustrates accelerators
developed with GPUs or FPGAs platforms, but the conjunction
of both has not been exploited until recently. The work
presented in this paper aims to ease the development of such
heterogeneous system, and could serve in different areas: for
example, a video application with multiple HD cameras could
let a FPGA handle the image capture and the first image
processing, the GPU taking care of more advanced image
processing. Another field of interest is medical imaging: in

[5] the coupling of FPGA and GPU is proposed as an effec-
tive solution at high frame rate processing. Another possible
application is in genomic processing. An ongoing project aims
at accelerating the genome comparison by refactoring the
genome compression format. For this application an FPGA
would be perfect for the genome decompression, while the
GPU could then handle part of the comparison. For all of these
applications, the bottleneck resides in the data throughput that
can be achieved through rapid communication lines.

GPUs are commonly plugged onto PCIe slots, and on the
FPGA side this bus interface is becoming a common utility in
recent chips. Therefore it is quite easy to build a setup using
a standard PC in which a GPU board and an FPGA board
are plugged on the same motherboard. The challenge is then
to allow the fastest possible communication between the two
platforms.

A. FPGA-GPU communication

Whenever we would like to exchange data between an
FPGA and a GPU the standard flow requires to allocate a
memory buffer for each device and one extra buffer in the
CPU memory. Once the buffers are allocated, we need two
memory copy operations: from the first device to the main
memory and then from the main memory to the second device.
Unfortunately this is not always the case and many actual
implementations exhibit even worse scenarios. If we look at
the CPU drivers we realize that each peripheral driver uses its
own memory buffer and so a third memory copy is necessary
from CPU memory to CPU memory. This flow of operations,
depicted in figure 1(b) has three main effects:

• Increasing memory requirements, doubled compared
with minimal requirement

• Reducing global throughput

• Increasing total latency

Although direct communication between FPGAs and GPUs
is the natural evolution of such a system, the reality is quite
discomforting. At our knowledge, there is no open enabling
technology available today. Partial solution exists, however.
NVIDIA proposed recently GPUDirect [6], a software pack-
age enabling RDMA, direct GPU-GPU communication and
possibly Peer-to-Peer memory access. This solution was only
announced (and not available) at the time of this project and
the few information available on the integration of a custom

peripheral, the FPGA in our case, was coming from APEnet+
project [7] where a direct support from NVIDIA was claimed.
This solution is also limited to a specific family of devices,
where a more general solution could better serve the vast area
of potential applications.

Therefore the aim of the project presented here consisted
in the realization of an open source framework allowing an
efficient FPGA⇔GPU communication through PCIe. As stated
above, a standard data transfer requires too many memory
operations, as illustrated in figure 1(a). The FPGA2 project
proposes a solution where data do not need to go through the
main memory, but only requires direct DMA transfer between
both devices, as shown in figure 1(c).

In this setup, the central CPU only serves as a controller
to start memory operations, and to synchronize the GPU
and the FPGA. Focusing on the PCIe network, this setup
enables transfers through the South bridge of the motherboard,
allowing the CPU to access the central memory while easing
congestion situations.

Host

CPU
RAM

Chipset

PCIe node

FPGA

PCIe

endpoint

GPU

PCIe

endpoint

(a) Standard PCIe flow (b) Real GPU-FPGA flow

Host

CPU
RAM

Chipset

PCIe node

FPGA

PCIe

endpoint

GPU

PCIe

endpoint

(c) Optimized flow

Fig. 1. Standard data flow and optimized transfers

Considering the vast set of scenarios that could benefit
from our framework, the design presents two interfaces to the
developer: the FPGA being seen as a simple memory, or as a
FIFO.

1) FPGA seen as a memory: Both at the hardware and
software side, the framework offers to simply view the FPGA

as a memory region, the software driver being able to access
data through addresses, with direct memory access or via DMA
transfers.

2) FPGA seen as a FIFO: As some application would
require data streaming, the FPGA can be seen as two FIFOs
(input and output). In this configuration, accessing the FPGA
via a special address range forces the FPGA design to supply
data to an input FIFO (in case of a write access) or to get data
from an output FIFO (reading access).

II. HARDWARE SETUP

For the first communication tests, two boards provided by
Xilinx have been used:

• The ML506 contains especially a 1-Lane connector
for PCI Express Designs and a Virtex 5 XC5VSX50T
FPGA.

• The ML555 contains especially a flash, a 8-Lane
connector for PCI Express Designs and a Virtex 5
XC5VLX50T FPGA. Only one lane of the connector
was used in the project.

These two boards allowed to validate the FPGA design
responsible for the PCIe communication. The design currently
only exploits one lane, but further improvements could lead
to a multi-lane solution. After the first validations, only the
ML555 board has been used during the development phase.

The board was plugged into a standard PC, the central CPU
being an Intel Core i7. The GPU used consisted in a NVIDIA
GeForce 8400 GS, from the NV50 family.

The FPGA design is based on a PCIe IP core offered by
Xilinx through Coregen. This IP is responsible for handling
the low-level PCIe communication and offers a synchronous
interface to the user design. Transaction Level Packets (TLPs)
are transmitted using a 64-bits data interface, the control being
pretty easy to handle.

Figure 2 represents a schematic view of the FPGA design.
The arrows correspond to the data lines, while all the control
paths are not shown.

P
ci
e

en
dp
o
in
t

In
te
rr
u
pt

M
an
ag
er

Dual_Mem_
Log

RX_Engine

TX_Engine

Fifo_in
Fpga2_User

Fifo_out

G
lo
b
al

C
on
tr
ol
le
r

Fig. 2. Schematic view of the FPGA design

The most important blocks are the following:

1) PCIe endpoint: This endpoint consists in an IP core
generated with Coregen. It instantiates the Multi-
Gigabit Transceiver (MGTs) and is responsible for
managing the PCIe link and packets. Its interface with
the FPGA subsystem is mainly a simple protocol for
the RX engine and the TX engine, allowing them
to get and send packets in an simplified fashion. It
also exchanges some control signals with the interrupt
manager, as everything goes through this endpoint
for any kind of communication with the rest of the
system.

2) Interrupt manager: This component is responsible
for the management of the interrupts. It holds regis-
ters that allow to raise/clear/mask interrupts. It also
contains a small state machine that implements a
simple protocol to manage the interrupts sent by the
PCIe endpoint. We can also notice that the user logic
can generate interrupts, as well as the RX and TX
engines.

3) TX engine: This module is responsible for sending
packets to the PCIe infrastructure. It is directly inter-
faced with the PCIe core, and is therefore dependent
on this core definition. The sending of packets is
triggered by other modules: The user application, the
RX engine in case of read requests that need an
answer, and the global controller for DMA transfers.

4) RX engine: This module is responsible for getting
packets from the PCIe endpoint. It processes these
packets and acts accordingly. Typically the types of
packets correspond to a standard write (to the Fifo,
control registers, interrupt manager, or user logic),
a read request, or a read completion. It is then
responsible for sending the right command to the
right component.

5) Fifo In: This FIFO serves as a simple way to see a
stream of data, from the user logic point of view. Data
comes from the PCIe fabric, during standard writes
or during DMA read completions. The user logic can
then retrieve its data.

6) Fifo Out: This FIFO serves to send a stream of data,
from the user logic point of view. It has the capability
of generating an interrupt when a programmable level
of fullness is reached. With this feature enabled the
user logic can send data in it and the host CPU can be
triggered to execute standard reads or DMA transfers
from FPGA to GPU. Once the programming is done,
it is then the TX engine that takes care of retrieving
the data from the FIFO.

7) Dual Mem Log: This is a dual port memory that
keeps trace of incoming packets. Basically it can log
the first 64-bits of any packet received by the RX
engine. Its size can be easily parametrized and the
content of the memory can then be retrieved by means
of read operations. This log memory was particularly
useful during the development process because it is
the only effective way to view the Transaction Level
Packets [9] transferred on the physical link. This
module is optional and can be removed if not needed.

8) FPGA2 User: This module represents the user logic.
It is currently almost empty. It contains a simple
dual-port memory as example, but is really the part
that will have to be modified by any developer who

would like to implement a new application. It can
raise interrupts, get data from the input FIFO, send
data through the output FIFO, and can be accessed
like a standard 1-cycle latency memory.

A. User Application

As the goal of the project was to offer a framework for
easing the realization of new applications, we embedded a
module that can be adapted to the need of any application.

It basically offers four interfaces to the application, as
shown in figure 2:

1) A standard memory-like access, the user application
being seen like a memory

2) An input FIFO
3) An output FIFO
4) A possibility to trigger interrupts transmitted to the

host CPU

Through the memory interface, a user design can imple-
ment any memory map, and so any kind of functionality. This
interface is fully synchronous, the only limitation being the
1-clock cycle latency of the read operation.

Despite the fact that the memory interface can be sufficient
for any application, two FIFO interfaces have been included
in order to ease the realization of streaming applications. The
input and output FIFOs are directly accessible by the user
logic, and can trigger interrupts when being in a certain state
(typically half full).

Finally, the user logic can trigger interrupts through 16
lines, allowing it to signal interesting events to the software. It
is mainly useful to indicate the end of a particular processing,
letting then the software reacts, launching, for example, a data
transfer.

B. Synthesis results

The FPGA design was synthesized and placed/routed with
Xilinx ISE 13.3, with a user logic consisting in a dual-port
memory. The results after placement/routing, for a design
embedding input and output FIFOs of 1024 dwords, a 1024
dwords Log memory, and a user memory of 512 dwords are
presented in table I.

Logic Utilization Used Available Utilization

Number of Slice Registers 4,090 32,640 12%
Number of Slice LUTs 6,234 32,640 19%
Number of occupied Slices 2,820 8,160 34%
Number of BlockRAM/FIFO 8 132 6%
Number of BUFG/BUFGCTRLs 4 32 12%

TABLE I. PLACEMENT/ROUTING RESULTS FOR AN EXAMPLE DESIGN

These results illustrate the minimal resources needed by the
interface logic. These numbers are for a full featured system
and can be further reduced if some components, for instance
the streaming interfaces, are not needed.

III. SOFTWARE SETUP

Choosing an open source operating system, as Linux for
example, provides a complete control over the available hard-
ware. GPUs are the main exception to this assertion. While
today all major hardware components of consumer electronics
are perfectly supported by open source drivers, this is only
seldom the case for GPUs. GPU vendors historically preferred
an obfuscated interface between the kernel and their chips
in the aim of unveil as less as possible of their intellectual
property. While this caused some issues with the diffusion of
open source systems this is a major limitation to the spread of
new ideas and research due to the minimal or none commercial
interest of a major company in supporting niche markets.
Considering the interest of using these chips in open source
systems, many independent groups investigated the matter
and today open source drivers are available and are in some
extent fully functional. Their performance are not always as
good as the proprietary implementation, but they allow easier
integration and modification and the gap is shrinking with time.
In the chosen platform we faced this issues in the attempt of
supporting NVIDIA GPUs and their programming paradigm:
CUDA. NVIDIA GPUs are supported by a proprietary driver
and CUDA is supported by a proprietary, closed source, library.
Our first attempt was using these two components to enable
direct communication between GPU and FPGA. Making use
of CUDA memory allocation functions it is straight forward to
transfer data from and to the GPU with excellent performances.
While this approach works it has a major drawback: it requires
data to be in the main system memory and we are unable to
instruct the DMA engines of the GPU to work directly with
buffers allocated in the FPGA. These are major limitations
in a framework for high performance computing. The second
attempt was adding DMA engines to the FPGA and then use
them to master the transfer. This is useful to transfer data
from the FPGA to the main memory, but with the proprietary
driver there is no way to retrieve the physical address of an
allocated buffer in the GPU and consequently it is impossible
to drive a direct transfer between the two platforms. These
three phases process (see figure 1(b)), transferring data from
FPGA to main memory, then from main memory to GPU and
finally elaborate them, can be partially overlapped reducing
data-rate bottlenecks 1; unfortunately, nothing can be done to
alleviate the latency penalty and the memory waste of this
approach.

At this stage we looked at alternatives to the closed source
drivers. An open source alternative exists and is actively
developed: nouveau [10]. This driver is functional and supports
many hardware acceleration, unfortunately it is unable to cope
with the CUDA extension proprietary library. Once again
the open source community comes up with an alternative
implementation of these functionalities in the project gdev
[11]. Coupling the two open source projects we are able to use
CUDA with the GPU and, more interestingly, gdev provides
the functionality of retrieve the physical address of a buffer
allocated in the GPU memory. In order to enable this feature,
the allocated buffer has to be placed in the PCIe aperture of
the card, and consequently the maximum size of this type of
buffer is limited compared with the amount of available board
memory. This is only partially a critical limit considered that

1only when the two platforms sit on different PCIe paths

we can transfer data from buffers within the GPU card at very
high speed, in our case in excess of 5GB/s. Once we have
the physical address of our buffer we can instruct the FPGA
to initiate a DMA transfer to the GPU memory, providing a
direct link between the two platforms, limiting the use of the
CPU to interrupt handling.

On the other side our FPGA implementation is feature
rich and a specific driver was written to fully support it in
the system. This driver delivers standard FILE abstraction
operations to read and write from the memory mapped region
as well as some special ioctls wrapped in a user space
library to interact with the streaming interface.

IV. RESULTS

We fully benchmarked the proposed design. Results of this
measure campaign are resumed in tables II and III were two
scenarios are compared. FPGA2 becomes useful when we
would like to transfer data between the two devices without
the intervention of the host machine as explained in detail in
section I. If FPGA2 is not used the only alternative is to copy
the data from one device to the main memory and then from
there to the second device.

Transferring data within the FPGA2 framework requires
2 buffers, one allocated in each device. On the other hand,
without FPGA2 we need at least one extra buffer in the
host machine but, due to actual GPU driver implementation
limitations, practically two extra buffers are needed, doubling
the memory requirements.

Data transferred per second are also slightly reduced work-
ing outside the FPGA2 framework: two memory operations
and an extra interruption are needed and this increases the
time necessary to complete the transfer. Transferring data from
the FPGA to the GPU can be accomplished in two ways:
using FPGA2 direct DMA transfers or using a combination
of DMA transfers from the FPGA to the host memory and
then employing CUDA function cuMemCpyHtoD to transfer
from the host to the GPU. Data rates measured in the two
situations are presented in tables II and III for various sizes
of data transfer. It is important to notice that the GPU has
more than one single PCIe lane. This explains the data rate
achievable with cuMemCpyHtoD. It is important to stress the
difference in performance achievable in reading and writing.
Writing to the FPGA memory is slower because we use the
FPGA’s DMA engine to fetch data. This approach requires an
extra PCIe packet for each DMA transfer, limiting the global
throughput. We presented this approach instead of using the
system DMA or the GPU DMA for this transfer because it is
the only one available to transfer data to both targets (GPU or
host memory).

Figures 3 and 4 present the same data graphically. From
figure 3 we can highlight how at a size of 256k bytes we have a
peek in the performances, while, for larger sizes, performance
degrades. Repeating the measure multiple times and mean the
results confirmed that this behaviors is consistent. We can only
make the hypothesis that the reason behind this degradation
is due to the GPU read request response time and we have
no control nor visibility over the GPU internals. In order to
make the comparison between the two systems easier for the
reader, table II and III present a column with the GPU data

transfer cuMemCpyHtoD cuMemCpyHtoD dma from fpga
size [MB/s] [MB/s] per lane [MB/s]

32b 2.628 0.164 0.677
64b 5.303 0.331 1.276
128b 10.387 0.649 2.542
256b 20.455 1.278 5.463
512b 41.851 2.615 10.338
1k 83.217 5.201 20.216
2k 66.821 4.176 30.356
4k 132.330 8.270 59.347
8k 260.338 16.271 79.417
16k 258.906 16.181 96.404
32k 816.972 51.060 130.668
64k 1275.952 79.747 170.828
128k 1770.036 110.627 185.038
256k 1979.053 123.690 195.066
512k 2488.911 155.556 199.422
1M 2465.544 154.096 201.783
2M 1977.173 123.573 202.539
4M 3191.864 199.491 203.417
8M 4065.098 254.068 203.895

TABLE II. FPGA TO GPU TRANSFER COMPARISON DATA

Fig. 3. FPGA DMA transfer rates

rates per lane. These data can be easier comparable with the
performance on the FPGA side of the system and figure 5
gives a graphical view of the data side by side. It is evident
from these data our solution outperform standard solution
for all transfer sizes smaller than 8MB. We would like to
remark another difference between the two PCIe sub-systems:
GPU uses a version 2.0 of the protocol, while the FPGA
implement the version 1.1. This is not a limitation for the

Fig. 4. FPGA and GPU data transfer rates

transfer cuMemcpyDtoH cuMemcpyDtoH dma to fpga
size [MB/s] [MB/s] per lane [MB/s]

32b 2.525 0.157 1.039
64b 4.773 0.298 1.449
128b 7.832 0.489 3.852
256b 11.624 0.726 7.607
512b 15.088 0.943 14.758
1k 18.010 1.125 27.744
2k 115.296 7.206 35.527
4k 224.833 14.052 66.290
8k 415.359 25.959 77.336
16k 641.631 40.101 116.767
32k 1000.832 62.552 122.422
64k 1492.145 93.259 168.454
128k 1929.458 120.591 181.472
256k 1350.322 84.395 189.261
512k 2861.639 178.852 149.113
1M 2858.155 178.634 149.965
2M 1930.869 120.679 150.802
4M 3199.055 199.940 151.511
8M 3262.074 203.879 151.783

TABLE III. FPGA FROM GPU TRANSFER COMPARISON DATA

Fig. 5. FPGA and GPU per lane data transfer rates

communication being the two version compatible, but the data
rate per lane is limited in the PCIe 1.1 to 250MB/s while
it is doubled to 500MB/s in the more recent version [9].
We would like to recall this is the speed of the transceivers
at the physical layer; this fact implies achievable logical data
rates are upper bounded by these numbers multiplied by the
available lanes. This final remark confirms that the last value
in the second column of table II, where we find a value higher
than 250MB/s, is not a measurement error, but it is coherent
with the system under test.

Latency is another interesting aspect of the communication.
Working without the framework leads to an increased latency.
From the time when a data buffer is available we need to notify
the host processor, then, if we use FPGA2, a DMA transfer
takes place and, at its end, data are available for processing
on the target device. Without FPGA2 the first notification
triggers a DMA transfer to the host memory; at the operation
end a copy between host memory buffers takes place, and then
a second DMA transfer data to the second device is performed.
Only at the end of the latter operation, data are available for
processing. While a partial overlap of operation is possible,
and recommended, to reduce the impact on the throughput,
there is no possible alleviation of latency increasing. The two
schedule examples shown on Figure 6(a) and 6(b) can better
help to compare the two situations.

FPGA DMA

0 5 10 15 20

HOST memcpy

cuMemCpyHtoD

GPU PROCESSING

(a) FPGA to GPU transfer without FPGA2

FPGA DMA

0 5 10 15 20

HOST memcpy

cuMemCpyHtoD

GPU PROCESSING

(b) FPGA to GPU transfer with FPGA2

Fig. 6. FPGA to GPU transfer with and without FPGA2

Similarly, if data are available in the GPU and we want to
process them in the FPGA we have the same response time.

V. CONCLUSION

This paper presented the implementation of an open source
framework allowing to rapidly develop applications requiring
high data rate and low latency links between an FPGA and
a GPU, on a PCIe infrastructure. The achieved data rate is
close to the theoretical maximum, and only requires minimal
interactions with the central CPU.

The results of this work are available on the following
web page: reds.heig-vd.ch/en/rad/Projets en realises/FPGA2.
aspx. Considering the state of this project, the following steps
envisioned are:

1) Support for multi-lane PCIe communication. Cur-
rently only a 1-lane endpoint is implemented, and
in order to fully take advantage of GPUs that show
up to 16x lanes, the FPGA design has to be adapted
in that direction.

2) Full streaming support. While on the FPGA side the
FIFOs allow to deal with streams of data, on the
software side the GPU communication would require
some enhancements in order to fully exploit streams
abstraction accordingly to the CUDA specification.

3) Other devices support. The current implementation
exploits an IP core supplied by Xilinx. This allowed
to efficiently build a demonstrator. The design of
FPGA2 could then be adapted to support other
devices by embedding other IP cores for the low-
level PCIe management, without modifying the main
architecture.

Finally, the outcome of this project opens a new way of
thinking calculation in terms of heterogeneous architectures.
Thanks to the DMA transfers implemented between the FPGA
and the GPU, the data rate could reach up to 150MB/s and
200MB/s. Such data rates, coupled with potential multi-lane
implementations, could lead to systems able to perform fast
computing mixing FPGAs and GPUs in a single computer.

ACKNOWLEDGMENT

The authors would like to thank Jérôme Stadelmann and
Yanick Saugy for their work in the early stage of the project,
and the HES-SO for the funding support of this project,
approved by the ISYS (http://isys.hes-so.ch) network of com-
petences.

REFERENCES

[1] R. Bittner and E. Ruf, “Direct gpu/fpga communication via pci express,”
in 1st International Workshop on Unconventional Cluster Architectures
and Applications (UCAA 2012), 2012.

[2] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas,” in Application
Specific Processors, 2008. SASP 2008. Symposium on, 2008, pp. 101–
107.

[3] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide. NVIDIA Corporation, 2007.

[4] K. Opencl and A. Munshi, “The opencl specification version: 1.0
document revision: 48,” 2009.

[5] R. K. Pingfan Meng, Matthew Jacobsen, “Fpga-gpu-cpu heterogenous
architecture for real-time cardiac physiological optical mapping,” in
Field-Programmable Technology (FPT), 2012 International Conference
on, 2012, pp. 37 – 42.

[6] NVIDIA, “Gpudirect,” Tech. Rep., 2012, https://developer.nvidia.com/
gpudirect.

[7] INFN Roma 1, “Apenet+ project,” Tech. Rep., 2012, http://apegate.
roma1.infn.it/mediawiki/index.php/APEnet%2B project.

[8] Xilinx Inc., “Ml555 user guide,” Tech. Rep., http://www.xilinx.com/
support/documentation/boards and kits/ug201.pdf.

[9] R. Budruk, D. Anderson, and E. Solari, PCI Express System Architec-
ture. Pearson Education, 2003.

[10] Diverse authors, “nouveau,” Tech. Rep., 2012, http://nouveau.
freedesktop.org/wiki/.

[11] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” Tech. Rep., 2012,
uSENIX Annual Technical Conference (USENIX ATC’12).

[12] Asus Inc., “P5q pemium user guide,” Tech. Rep., http://www.cizgi.com.
tr/resource/vfiles/cizgi/pms file/73/p5qpremium en.pdf.

[13] Xilinx Inc., “Ml505 user guide,” Tech. Rep., http://www.xilinx.com/
support/documentation/boards and kits/ug201.pdf.

[14] ——, “Endpoint block plus v1.14 user guide,” Tech. Rep.,
2010, http://www.xilinx.com/support/documentation/ip documentation/
pcie blk plus ug341.pdf.

